miércoles, 23 de junio de 2010

m

Función Inyectiva:

Una función es inyectiva si cada f(x) en el recorrido es la imagen de exactamente un único elemento del dominio. En otras palabras, de todos los pares (x,y) pertenecientes a la función, las y no se repiten.

Para determinar si una función es inyectiva, graficamos la función por medio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no


Función Sobreyectiva:

Sea f una función de A en B , f es una función epiyectiva (tambien llamada sobreyectiva) , si y sólo si cada elemento de B es imagen de al menos un elemento de A , bajo f .

A elementos diferentes en un conjunto de partida le corresponden elementos iguales en un conjunto de llegada. Es decir, si todo elemento R es imagen de algún elemento X del dominio.

Ejemplo:

A = { a , e , i , o , u }

B = { 1 , 3 , 5 , 7 }

f = { ( a , 1 ) , ( e , 7 ) , ( i , 3 ) , ( o , 5 ) , ( u , 7 ) }

Simbólicamente:

f: A B es biyectiva Û f es inyectiva y f es sobreyectiva


Función Biyectiva:

Sea f una función de A en B , f es una función biyectiva , si y sólo si f es sobreyectiva e inyectiva a la vez .

Si cada elemento de B es imagen de un solo elemento de A, diremos que la función es Inyectiva. En cambio, la función es Sobreyectiva cuando todo elemento de B es imagen de, al menos, un elemento de A. Cuando se cumplen simultáneamente las dos condiciones tenemos una función BIYECTIVA.

Ejemplo:

A = { a , e , i , o , u }

B = { 1 , 3 , 5 , 7 , 9 }

f = { ( a , 5 ) , ( e , 1 ) , ( i , 9 ) , ( o , 3 ) , ( u , 7 ) }

Teorema:

Si f es biyectiva , entonces su inversa f - 1 es también una función y además biyectiva.


Función Par:

Una función f: R!R es par si se verifica que

" x " R vale f(-x) = f(x)

Si f: R!R es una función par, entonces su gráfico es lateralmente simétrico respecto del eje vertical. “Simetría axial respecto de un eje o recta” (el dominio tiene que ser un conjunto simetrico respecto al origen)

Se dice que una función es par si f(x) = f(-x)

Ejemplo: La función y = x2 es par pues se obtienen los mismos valores de y independientemente del signo de x.

La función f(x)=x2 es par ya que f(-x) = (-x)2 =x2

No hay comentarios:

Publicar un comentario